XXXX	XX	ANALOG ELECTRONICS AND LINEAR INTEGRATED	LT P C								
(Sub C	ode)	CIRCUITS	3 0 0 3								
COURS	E OB.	JECTIVES:									
✓	To u	nderstand the operation of small and large signal amplifiers using BJT	and FET.								
✓	_	ain knowledge in designing and analyzing circuits for various increh applications.	dustrial and								
✓		earn the fundamentals of IC fabrication and different technologies	used in the								
✓	To study the linear and non-linear circuits using operational amplifiers.										
✓	To understand the working principles, functions, and applications of special integrated circuits (ICs).										
✓	To integrate business statistics in electronics engineering for data-driven design optimization and reliability assessment.										
UNIT -	1	SMALL AND LARGE SIGNAL AMPLIFIERS USING BJT AND FET	8								
		Audio Processing, Measurement & Instrumentation, Audio Power An Transmission, Medical & Scientific Equipment.	nplification,								
- CC - C	E - CB	emiconductor devices - Need for Biasing - Biasing Circuits - Classifica Amplifiers - FET amplifier - Differential Amplifier using BJT - Powe ss B - Class C - Class D - Push pull Amplifier.									
UNIT -	2	FEEDBACK AMPLIFIERS AND OSCILLATORS	8								
	entation	Audio amplifiers, operational amplifiers (Op-Amps), RF n amplifiers, Clock Generators, Signal Generators, Radio Transm	1 0								
Advanta	ges of	negative feedback - Feedback Amplifiers - Classifications - Voltage	ge/Current -								
		Positive feedback - Condition for oscillations - Phase shift - Wien brid stal oscillators.	lge - Hartley								
UNIT -	3	IC FABRICATION	7								

Applications: Automotive Electronics, Communication Systems, Smart Home Devices, Consumer Electronics.

IC Classification - Monolithic IC technology - Basic planar processes - Fabrication of Monolithic transistors - FET - Monolithic diodes - Integrated resistors - Integrated capacitors - and PV cell.

UNIT - 4 OPERATIONAL AMPLIFIER AND ITS APPLICATIONS

8

Applications: Industrial & Automation, Wireless Communication, ADAS & LiDAR Systems - Pedestrian Detection

Basic operations of Op-Amp-AC and DC Characteristics – Inverting - Non-inverting Amplifiers - Summer - Differentiator - Integrator – Instrumentation Amplifiers – Log and Antilog Amplifiers

- Schmitt trigger – A/D Converter using Op-Amps.

UNIT - 5 SPECIAL ICs AND SIGNAL CONVERSION CIRCUITS

8

Applications: FPGA, MEMS (Micro-Electro-Mechanical Systems), Analog & Mixed-Signal ICs

V/I and I/V conversion - V/F and F/V conversion - IC 555 Timer - IC566 Voltage controlled oscillator - IC565 Phase Locked Loop - LM317 - IC723 voltage regulators- Astable and monostable operation - AD 633 Analog multiplier ICs - SMPS - ICL 8038 Function generator ICs.

UNIT - 6 CURRENT TRENDS IN LINEAR INTEGRATED CIRCUITS

6

Industry Demand - Important aspects of ICs policies - Design and Performance standards - Safety Considerations - EMI/EMC compliance - Industry-based IC circuit design - System-on-Chip (SoC) and System-in-Package (SiP) integration - MEMS-based analog sensors - Shaping the IC Market using AI and ML technologies Integration.

TOTAL: 45 PERIODS

OUTCOMES:

At the end of the course, the students will be able to

- Describe the principles, characteristics, and frequency response of small and large signal amplifiers using BJT and FET.
- 2. Design the feedback amplifiers and oscillators through a comprehensive understanding of their operational behaviors.

3.	Explain the fundamental concepts, materials, and processes involved in Integrated Circuit (IC) fabrication.
4.	Design op-amp-based simple circuits by understanding the operational characteristics of both linear and non-linear circuits.
5.	Demonstrate the working of special ICs for timing and pulse generation applications.
6.	Understand key IC policies, regulations, standards, and technology integrations to meet industry requirements.
TEXTE	SOOKS:
1.	S. Salivahanan, N. Suresh Kumar, "Electronic Devices and Circuits", 4 th edition, McGraw-Hill Education, 2016.
2.	Ramakant A. Gayakwad, "Op-Amps and Linear Integrated Circuits" 4th Edition, Pearson Publisher, 2020.
3.	B. P. Singh, Rekha Singh, "Electronic Devices and Circuits", 2nd Edition, Pearson Education, 2013.
REFER	ENCES:
1.	Jacob Millman, Christos C. Halkias, Satyabrata Jit, "Electronic Devices and Circuits", Tata McGraw Hill Publishing Limited, New Delhi, 2015.
2.	Albert Malvino & David J. Bates, "Electronic Principles" McGraw-Hill Education, 2015 (8th Edition)
3.	Haocheng Jin, "The History, Current Applications and Future of Integrated Circuit" USA, 2023.
4.	D. Roy Choudhary, Sheil B. Jani, "Linear Integrated Circuits", 4th Edition, New Age International, New Delhi, 2010.
5.	"Analog Design Journal" by Texas Instruments.

CO – PO MAPPING

CO						PO							PSO	
CO	1	2	3	4	5	6	7	8	9	10	11	1	2	3
1	2	1	1	-	-	-	-	-	-	-	1	1	-	1
2	3	3	2	-	-	-	ı	ı	-	-	1	1	2	1
3	2	1	1	-	ı	-	1	ı	-	ı	1	1	-	1
4	3	3	2	-	-	-	-	-	-	-	1	1	2	1
5	2	1	1	-	-	-	-	-	-	-	1	1	-	1
6	2	2	2	-	-	-	-	-	-	-	1	1	-	1
AVG	2.33	1.83	1.5	-	-	-	-	-	-	-	1	1	0.67	1
				LOW	['] (1);	MEDIU	M(2);	HI	GH(3))				

		CONTROL SYSTEMS	L T P C 3 0 0 3
COU	RSE O	BJECTIVES:	3 0 0 3
√		troduce the fundamental concepts of control systems and their practical	
√		cations. alyze the time - domain and frequency - domain behavior of control syste	ame.
√	To ur	derstand stability analysis methods and design compensators/controllers over ment.	
✓		plore modern control techniques using state - space analysis.	
✓		troduce real - world applications in control systems.	
UNIT	' - 1	SYSTEMS AND THEIR REPRESENTATIONS	7
Applic	cations	of control systems in robotics and industrial automation.	
mecha		to Control System, Open - loop & closed - loop systems, transfer for electrical systems, block diagram reduction, signal flow graphs and s	
UNIT	- 2	TIME DOMAIN ANALYSIS	8
Applic	cations	of cruise control and automobile suspension systems.	
	ise, sta	nse & Stability Analysis: Standard test signals, first & second - ore bility concepts, pole - zero analysis, Routh - Hurwitz criterion and	•
UNIT	- 3	FREQUENCY RESPONSE ANALYSIS	8
Applic	cations	of design of power system stabilizers (PSS) in electrical power networks.	
-	•	esponse & Stability Analysis: Bode plot, Polar plot, time - frequen yquist stability criterion.	cy domain
UNIT	· - 4	COMPENSATOR AND CONTROLLER	8
Applic	cations	of temperature control in industrial processes.	
Comp	ensators	Design & PID Control: Realization of basic compensators - lag, lead an using Bode plot. PID controller design using reaction curve and Ziegle	
	que.		
compe		STATE SPACE ANALYSIS	7
compe techni UNIT	- 5	STATE SPACE ANALYSIS of flight control systems in aerospace engineering.	7
competechni UNIT Applic	- 5 cations - Spac		

Control Systems Applications & Trends: Used in smart grids, autonomous vehicles and IoT automation. Transfer function to controllable, observable and Jordon canonical forms using scilab coding.

TOTAL: 45 PERIODS

OUTCOMES:

At the end of the course the students will be able to

- 1. Utilize the concepts of control systems to model and derive transfer functions for electrical and mechanical systems.
- 2. Implement the system response and stability using time-domain methods, Routh-Hurwitz and Root Locus.
- 3. Apply frequency response techniques like Bode plots and Nyquist criterion to assess system stability.
- 4. Implement compensation methods and PID controllers for enhancing system performance.
- 5. Formulate state-space models, compute state transition matrices and analyze controllability and observability.
- 6. Apply control systems in smart technologies and perform canonical forms using Scilab.

TEXT BOOKS:

- 1. "Data-Driven Science and Engineering: Machine Learning, Dynamical Systems and Control" by Steven L. Brunton and J. Nathan Kutz, published in 2022.
- 2. "Control Systems: An Introduction" by Hassan Khalil, published in 2022.
- 3. Norman S. Nise, "Control System Engineering", John Wiley & Sons, 6th Edition, 2011.

REFERENCES:

- 1. "Modern Control Systems" by Richard C. Dorf and Robert H. Bishop, 14th Edition, 2020.
- 2. "Automatic Control Systems" by Farid Golnaraghi and Benjamin C. Kuo, 10th Edition, 2017
- 3. "Control Systems Engineering" by Norman S. Nise, 8th Edition, 2019.
- 4. "Adaptive Control: Algorithms, Analysis and Applications" by Ioan Doré Landau, Rogelio Lozano, Mohammed M. Saad and Alireza Karimi, 2024
- 5. C. Dorf & R.H. Bishop, "Modern Control Systems", Pearson Education, 11th Edition, 2008.

CO - PO MAPPING

CO						PO							PSO	
CO	1	2	3	4	5	6	7	8	9	10	11	1	2	3
1	3	3	1	-	-	-	-	-	-	-	1	3	3	1
2	3	3	2	-	-	-	-	-	-	-	1	3	3	1
3	3	3	2	-	-	-	-	-	-	-	1	3	3	1
4	3	3	2	-	-	-	-	-	-	-	1	3	3	1
5	3	3	2	-	-	-	-	-	-	-	1	3	3	1
6	2	1	1	-	-	-	-	-	-	-	1	1	1	1
				LOW	(1);	MEDIU	JM (2)	; H	IGH (3)			•	

		ELECTRICAL MACHINES II	L T P C 3 0 0 3					
COUI	RSE OBJEC	CTIVES:						
✓	To understagenerators.	and the construction and performance of salient and non – salient type sync	hronous					
✓	To develop synchronou	an concept of understanding the principle of operation and performance of us motor.						
✓		hend the behavior ofpoly phase induction machinesunder the aspect of consf operation, and performance.	truction,					
✓	To understa	and the starting and speed control of three-phase induction motors.						
✓		owledge in the construction and working principles of single phase induction electrical machines.	n motor					
✓	To explore	the recent trends in electrical machines, focusing on modern applications.						
UNIT - 1 SYNCHRONOUS GENERATOR								
		ustrial Applications - Transportation - Power Generation - Automotive and						

Applications: *Industrial Applications - Transportation - Power Generation - Automotive and Marine*Construction & types - Operating principle of synchronous generator - EMF equation - Equivalent circuit - Phasor diagrams - Synchronization&Parallel Operation - Voltage regulation - EMF, MMF, ZPF and A.S.A method - Two reaction theory - Slip test.

UNIT - 2 SYNCHRONOUS MOTOR

8

Applications: Commercial and Infrastructure-Ship Propulsion Systems-Rolling Mills and Metal Processing-Elevators and Escalators

Principle of operation - Torque equation - Operation on infinite bus bars - V and Inverted V curves - Power input and power developed equations - Starting methods - Current loci for constant power input, constant excitation and constant power Developed-Hunting - Natural frequency of oscillations - Damper windings

UNIT - 3 THREE PHASE INDUCTION MOTOR

- 8

Applications: Conveyors and Material Handling-Office Equipment-Electric Vehicles - Hybrid Vehicles-Trains and Metro Systems

Constructional details - Types of rotors - Principle of operation - Slip - Equivalent circuit - Torque-Slip characteristics - Condition for maximum torque - Losses and efficiency - Load test - No load and blocked rotor tests - Circle diagram - Separation of losses - Double cage induction motors - Induction generators .

UNIT - 4 STARTING AND SPEED CONTROL OF THREE PHASE INDUCTION MOTOR

8

Applications: Pumps and Compressors-Water Treatment Plants -Large Air Compressors- Cranes and Lifts

Need for starting - Types of starters - DOL, Rotor resistance, Autotransformer and Star delta starters - Speed control - Voltage control, Frequency control and pole changing - Cascaded Connection-V/f control - Braking of three phase induction motor - Plugging, dynamic braking and regenerative braking

UNIT	- 5	SINGLE PHASE INDUCTION MOTOR AND SPECIAL MACHINES	8
Applic	ations-Aero	space and Aviation-CNC Machines-Camera Auto-Focus Mechanisms	
		ails - Double field revolving theory - Equivalent circuit - No load and block	
	•	s of single-phase induction motors - Linear induction motor - Repulsi	on motor -
Hyster	resis motor -	AC series motor- Servo motors - Stepper motors.	
UNIT		CURRENT TRENDS IN ELECTRICAL MACHINES	5
Upcon	ning Trends	nd Consumer Preferences - Factors affecting CAGR - Best firms—Recen in Electrical machines - Smart Grid Integration -Automation and Control Industry oriented applications - Simulation design of electrical machines us TOTAL: 45	l-IoT based sing tools.
OUTO	COMES:		
At the	end of the c	ourse the students would be able to	
1.	Analyze the conditions.	ne operation and characteristics of synchronous generators under differen	nt operating
2.	Compute to parameters	the efficiency and performance of a synchronous motor using equivals.	lent circuit
3.	-	he equivalent circuit of three phase induction motor, by identifying key comes on performance.	ponents and
4.	Analyzethe	e speed control and starting methodsof three phase induction motor.	
5.		he characteristics, advantages, and limitations of single phase induction moviversal motors, and other special machines.	tor, stepper
6.	Examine the electrical n	he market trends, industry-oriented applications, and technological advanachines.	ncements in
TEXT	BOOKS:		
1.		rald, Charles Kingsley, Stephen. D. Umans, 'Electric Machinery', McGrawHill Ltd, 6th Education 2017.	lpublishing
2.	· •	Chapman, 'Electric Machinery Fundamentals'4th edition, McGraw Hill Edition 2017.	ucation
3.	D.P.Kothar 2017.	riandI.J.Nagrath, 'ElectricMachines', McGrawHillPublishingCompanyLtd, 5	th Edition
REFE	RENCES:		
1.	Vincent De	el Toro, 'Basic Electric Machines' Pearson India Education, 2016.	
2.	B.R.Gupta 2015.	,'FundamentalofElectricMachines'NewageInternationalPublishers,3rdEdition	on, Reprint

3.	Murugesh Kumar, 'Electric Machines', Vikas PublishingHousePvt.Ltd, Firstedition 2010.
4.	IEEE Energy Conversion Congress and Exposition, ECCE
5.	P.S.Bhimbhra, 'Electrical Machinery', Khanna Publishers, second edition, 2021.

CO - PO MAPPING

CO						PO						PSO			
CO	1	2	3	4	5	6	7	8	9	10	11	1	2	3	
1	3	2	1	-	-	ı	_	ı	ı	-	_	2	3	ı	
2	3	2	1	-	-	ı	_	ı	ı	-	-	2	3	ı	
3	3	2	1	-	-	-	-	-	-	_	_	2	3	-	
4	3	2	1	-	-	-	-	-	-	-	_	2	3	-	
5	3	2	1	-	-	ı	-	1	ı	-	_	2	3	1	
6	2	2	1	-	_	-	_	-	-	_	_	2	3	-	
				LC	DW (1);	MEI	OIUM (2); H	IGH (3)					

(XXXXX) Subject	LIFE SKILL IV – PUBLIC SPEAKING PRACTICES	L T P C 2 0 0 1
Code		2 0 0 1
COURSE OBJ	TECTIVES:	
✓ To deve benefits	lop proficiency in public speaking, including its history, significant. (C 18)	nce, and
✓ To explo	ore the history and evolution of public speaking. (C 19)	
✓ To enga	ge with the audience, especially in high-pressure situations like pr	ress meets.
✓ To apply reasonir	y structured debate formats to evaluate arguments critically and deag skills.	evelop
✓ To synth discussi	nesize and articulate ideas effectively by engaging in complex and	abstract
V	constrate public speaking skills in real-world contexts by presenting to education, history, entertainment, and current affairs.	g on topics
UNIT - I B	ASICS OF PUBLIC SPEAKING	2
History of publ	ic speaking – benefits	
Practice :Effec	tive practices for public speaking- Public speaking topics	
UNIT - II L	ISTENING TO FAMOUS SPEECHES	2
TED talks – pre	esentations, Josh talks (C 20)	
Practice: Key estage presence	elements of TED talk presentations - prioritize simplicity in visual	s and strong
UNIT - III R	ESPONDING AND TACKLING THE QUESTIONS	2
Facing the audi	ence (Press meet)	
Practice : Engag	ging with the audience in a press meet – Handling Challenging qu	estions (C21)

Dos and Don'ts of group debate – Practicing various types of debate format (C 22)

Practice: Structuring a debate session - Focusing on moral reasoning (C 23)

2

UNIT - IV GROUP DEBATE

UNIT - V GROUP DISCUSSION LEVEL 2

2

Engaging in discussions on complex and contemporary topics (C 24)

Practice: Argument structure & logical flow

UNIT - VI PUBLIC SPEAKING PRACTICES

2

Topics in Education, History, Entertainment, Current affairs

Practice: Content, delivery, engagement, and overall effectiveness

TOTAL: 12 PERIODS

OUTCOMES:

At the end of the course the students would be able to

- 1. Initiate and manage professional conversations with correct greetings and courtesies.
- 2. Demonstrate proficiency in asking clear and appropriate questions in professional and technical conversations.
- 3. Adjust their tone and intonation based on the context of the conversation.
- 4. Demonstrate confidence in handling one-on-one interviews and personal conversations through effective communication strategies.
- 5. Students will be able to formulate and ask open-ended brainstorming questions.
- 6. Understand the importance and purpose of group discussions in professional and academic settings.

REFERENCES:

- 1. "Advanced Communication Skills" by Mathew Richardson, Charlie Creative Lab, 2020
- 2. Andy Gillett, Using English for Academic purposes for students in higher Education. https://www.uefap.org/reading/
- Meenakshi Raman & Sangeeta Sharma (2017). Technical Communication: Principles
- 3. and Practice (3rd Edition). Oxford University Press, India.
 - Rajendra Pal & J.S. Korlahalli (2011). Essentials of Business Communication. Sultan
- 4. Chand & Sons, New Delhi.

CO - PO MAPPING

CO	PO	PO													
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	-	-	-	-	-	-	-	-	3	3	-	3	-	-	-
2	-	-	-	-	-	-	-	-	3	3	-	3	-	-	-
3	-	-	-	-	-	-	-	-	3	3	-	3	-	-	-
4	-	-	-	-	-	-	-	-	3	3	-	3	-	-	-
5	-	-	-	-	-	-	-	-	3	3	-	3	-	-	-
LOV	V(1);	ME	EDIUN	1(2);	HIC	GH (3)	1	1	I	1	I				I

INVENTIVE PRINCIPLES

L T P C

2 0 0 1

COURSE OBJECTIVES:

- ✓ Understand the fundamental concepts of invention, innovation, and creativity through historical case studies of engineering breakthroughs.
- ✓ Learn the 40 Inventive Principles of TRIZ and their application in systematic engineering problem-solving.
- ✓ Gain knowledge about patents, copyrights, trademarks, and the legal framework for protecting innovations
- ✓ Study various knowledge-sharing methods, reverse engineering, and product analysis techniques for innovation development
- ✓ Implement structured methodologies to approach problem-solving in engineering applications
- ✓ Foster creativity and critical thinking skills to develop innovative solutions for complex engineering challenges

UNIT – I INTRODUCTION TO INVENTIVE PRINCIPLES

2

Definition of invention and innovation - creativity - History - Case studies of successful engineering innovations

UNIT – II TRIZ AND SYSTEMATIC PROBLEM SOLVING

2

Inventive Principles of TRIZ - Engineering applications of TRIZ principles - Practical exercises and brainstorming

UNIT – III INTELLECTUAL PROPERTY AND PATENT LAWS

2

Introduction to patents – Types of patents (Utility Patents, Design Patents , Plant Patents , Provisional Patents , Non-Provisional Patents , Software Patents , Business Method Patents) – comparison - copyrights and trademarks - Patent filing process and IP rights

UNIT – IV OPEN-SOURCE INNOVATION AND KNOWLEDGE SHARING

2

Methods of problem identification, Reverse engineering and product analysis- Future Trends and Innovations

UNIT – V ETHICS IN ENGINEERING AND INNOVATION

2

Importance of ethics in engineering - Professional codes of ethics (IEEE, ASME, ASCE, etc.) Case studies of ethical dilemmas in engineering.

UNIT – VI PRACTICAL IMPLEMENTATION & CASE STUDIES

2

Case studies of famous Patent and their impact analysis on industry, economy, and society

TOTAL: 12 PERIODS

COURSE OUTCOMES:

At the end of the course the students will be able to

- Demonstrate an understanding of how engineering innovations emerge and their impact 1. on society
- 2. Utilize systematic TRIZ-based approaches to address engineering challenges effectively
- Understand the importance of intellectual property protection and the procedures 3. involved in securing patents.
- Apply open-source methodologies, reverse engineering, and product analysis for innovative problem-solving
- 5. Evaluate past engineering innovations to extract key lessons and best practices
- Create and refine innovative ideas using structured methodologies like TRIZ and other 6. inventive principles

TEXT BOOKS:

- 1. "And Suddenly the Inventor Appeared: TRIZ, the Theory of Inventive Problem" Solving, Genrich Altshuller, Technical Innovation Center, Inc., 2nd Edition, 1996.
- 2. "Engineering Design: A Project-Based Introduction", Clive L. Dym, Patrick Little Wiley Publisher, 4th Edition, 2013.
- 3. "Intellectual Property: Patents, Trademarks, and Copyright, Richard Stim Cengage Learning Publisher, 14th Edition, 2020.
- 4. "Open Innovation: The New Imperative for Creating and Profiting from Technology", Henry Chesbrough, Harvard Business Review Press, 1st Edition, 2003.

REFERENCE BOOKS:

- 1. "TRIZ for Engineers: Enabling Inventive Problem Solving", Karen Gadd, Wiley Publisher, 1st Edition, 2011.
- 2. "The Innovator's Dilemma: When New Technologies Cause Great Firms to Fail", Clayton M. Christensen, Harvard Business Review Press, 1st Edition, 1997.
- 3. "Engineering Ethics: Concepts and Cases", Charles E. Harris Jr., Michael S. Pritchard, Michael J. Rabins, Cengage Learning Publisher, 6th Edition, 2018.
- 4. "Reverse Engineering: Mechanisms, Structures, Systems & Materials", Wego Wang CRC Press, 1st Edition, 2010.

XXX (Sub C		ELECTRONICS AND LINEAR INTEGRATED CIRCUITS LAB	L	T 0	P 3	C
,		BJECTIVES:	U	U	3	
✓	_	nin knowledge about rectifiers with a filter and design the linear circuit	app	lica	tion	ıs
✓		an Op-amp. nalyze small and large signal amplifiers and oscillator circuits.				
	To de	esign analog circuits for various applications using simulation software	e too	ls a	nd	
√	hardv	ware by applying the knowledge of semiconductor devices.				
LIST ()F EX	PERIMENTS:				
1.	Chara	acteristics of BJT-CE configurations.				
2.	Chara	acteristics of JFET.				
3.	Volta	ge regulator using Zener diode.				
4.	Desig	gn and Frequency Response Characteristics of a Common-Emitter Am	plifi	er.		
5.	Chara	acteristics of Half-wave and Full-wave rectifiers with filter.				
6.	Inver	ting & non-inverting amplifiers using op-amp.				
7.	Integ	rator and differentiator circuits using op-amp.				
8.	Wien	bridge oscillator using op-amp.				
9.	Astab	ole operation using IC 555.				
10.	Simu	lation of op-amp circuits using simulation software tools.				
		TOTAL:	30	PE	RIC	DDS
OUTC	OMES	S:				
Upon	succes	sful completion of the course, students will be able to				
1.	Analy	yze the rectifier circuits with different filter configurations.				

Analyze the behavior of small-signal and large-signal amplifiers.
 Design and simulate analog circuits using industry-standard simulation software and hardware tools for real-world applications.

CO – PO MAPPING

со	PO												PSO			
	1	2	3	4	5	6	7	8	9	10	11	1	2	3		
1	3	3	2	1	-	-	-	-	-	-	-	-	1	1		
2	3	3	2	2	-	-	-	-	-	-	-	-	1	1		
3	3	3	2	2	-	-	-		-	-	-	-	1	1		
LOW (1); MEDIUM (2); HIGH (3)																

EEXXX		ELECTRICAL MACHINES -II LABORATORY	LT P C 0 0 31.5						
COURS	SE OB	JECTIVES:							
✓	To Provide hands-on experience in understanding the construction, operation, and characteristics of various AC machines (generators and motors).								
✓	To conduct various tests (no-load, blocked rotor, open circuit, short circuit, V and Inverted V) on AC machines to determine their performance parameters, efficiency, and regulation.								
✓	To Familiarize students with characteristics of single phase induction motor.								
LIST O	F EXI	PERIMENTS:							
1.	Re	egulation of three phase alternator by EMF and MMF methods.							
2.	Regulation of three phase alternator by ZPF and ASA methods								
3.	Re	egulation of three phase salient pole alternator by slip test.							
4.	V	and Inverted V curves of Three Phase Synchronous Motor							
5.	Lo	oad test on three-phase induction motor.							
6.	No	o load and blocked rotor tests on three-phase induction motor.							
7.	Lo	oad test on single-phase induction motor.							
8.	No	o load and blocked rotor test on single-phase induction motor							
		TOTAL: 4	5 PERIODS						
OUTCO)MES	:							
At the en	nd of t	he course the students is expected to be able to							

CO1	Analyze the operation and characteristics of synchronous generators by conducting
	open circuit and short circuit test.
CO2	Compute the efficiency and performance of a synchronous motor using V and Inverted
	V method
CO3	Interpret the equivalent circuit of three phase induction motor, by identifying key
	components and their effects on performance.
CO4	Obtain the equivalent circuit of single phase induction motor, by conducting no load
	and blocked rotor test.
CO5	Examine the characteristics of single phase induction motor by conducting load test.

CO – PO MAPPING

СО	PO												PSO		
	1	2	3	4	5	6	7	8	9	10	11	1	2	3	
1	3	3	1	3	2	-	-	-	2	-	-	2	1	-	
2	3	3	1	3	2	-	-	-	2	-	-	2	1	-	
3	3	3	1	3	2	-	-	-	2	-	-	2	1	-	
4	2	2	3	2	2	-	-	-	2	-	-	2	1	-	
5	2	2	1	1	1	-	-	-	2	-	-	2	1	-	
LOW (1); MEDIUM (2); HIGH (3)															

COURSE OBJECTIVES:

- To explore simulation techniques for analyzing linear and nonlinear differential equations in control systems. make the students familiarize with various representations of systems.
- To understand system modeling, identification methods and stability analysis for various physical systems.
- To design and evaluate compensators, controllers and discrete-time models for improving system performance.

LIST OF EXPERIMENTS:

- 1. Analog (op amp based) simulation of linear differential equations.
- 2. Numerical Simulation of given nonlinear differential equations.
- 3. Real time simulation of differential equations.
- 4. Mathematical modeling and simulation of physical systems in at least two fields.
 - Mechanical
 - Electrical
 - Chemical process
- 5. Stability analysis using Pole zero maps and Routh Hurwitz Criterion in simulation platform.
- 6. Root Locus based analysis in simulation platform.
- 7. Determination of transfer function of a physical system using frequency response and Bode's asymptotes.
- 8. Design of Lag, lead compensators and evaluation of closed loop performance.
- 9. Design of PID controllers and evaluation of closed loop performance.
- 10. Discretization of continuous system and effect of sampling.
- 11. Test of controllability and observability in continuous and discrete domain in simulation platform.

TOTAL: 30 PERIODS

COURSE OUTCOMES:

At the end of the course the students will be able to

CO1: Implement analog and numerical simulations for solving linear and nonlinear differential equations in control systems.

CO2: Utilize system modeling, identification techniques and stability analysis to evaluate physical system dynamics.

CO3: Utilize system modeling, identification techniques and stability analysis to evaluate physical system dynamics.